Use of order sets in inpatient computerized provider order entry systems: a comparative analysis of usage patterns at seven sites


BACKGROUND:

Many computerized provider order entry (CPOE) systems include the ability to create electronic order sets: collections of clinically related orders grouped by purpose. Order sets promise to make CPOE systems more efficient, improve care quality and increase adherence to evidence-based guidelines. However, the development and implementation of order sets can be expensive and time-consuming and limited literature exists about their utilization.

METHODS:

Based on analysis of order set usage logs from a diverse purposive sample of seven sites with commercially and internally developed inpatient CPOE systems, we developed an original order set classification system. Order sets were categorized across seven non-mutually exclusive axes: admission/discharge/transfer (ADT), perioperative, condition-specific, task-specific, service-specific, convenience, and personal. In addition, 731 unique subtypes were identified within five axes: four in ADT (S=4), three in perioperative, 144 in condition-specific, 513 in task-specific, and 67 in service-specific.

RESULTS:

Order sets (n=1914) were used a total of 676,142 times at the participating sites during a one-year period. ADT and perioperative order sets accounted for 27.6% and 24.2% of usage respectively. Peripartum/labor, chest pain/acute coronary syndrome/myocardial infarction and diabetes order sets accounted for 51.6% of condition-specific usage. Insulin, angiography/angioplasty and arthroplasty order sets accounted for 19.4% of task-specific usage. Emergency/trauma, obstetrics/gynecology/labor delivery and anesthesia accounted for 32.4% of service-specific usage. Overall, the top 20% of order sets accounted for 90.1% of all usage. Additional salient patterns are identified and described.

CONCLUSION:

We observed recurrent patterns in order set usage across multiple sites as well as meaningful variations between sites. Vendors and institutional developers should identify high-value order set types through concrete data analysis in order to optimize the resources devoted to development and implementation.

Read more: 
IJMI
PubMed

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Leave a comment

Your email address will not be published. Required fields are marked *