Validation of a Crowdsourcing Methodology for Developing a Knowledge Base of Related Problem-Medication Pairs


BACKGROUND

Clinical knowledge bases of problem-medication pairs are necessary for many informatics solutions that improve patient safety, such as clinical summarization. However, developing these knowledge bases can be challenging.
Objective: We sought to validate a previously developed crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large, non-university health care system with a widely used, commercially available electronic health record.

METHODS

We first retrieved medications and problems entered in the electronic health record by clinicians during routine care during a six month study period. Following the previously published approach, we calculated the link frequency and link ratio for each pair then identified a threshold cutoff for estimated problem-medication pair appropriateness through clinician review; problem-medication pairs meeting the threshold were included in the resulting knowledge base. We selected 50 medications and their gold standard indications to compare the resulting knowledge base to the pilot knowledge base developed previously and determine its recall and precision.

RESULTS

The resulting knowledge base contained 26,912 pairs, had a recall of 62.3% and a precision of 87.5%, and outperformed the pilot knowledge base containing 11,167 pairs from the previous study, which had a recall of 46.9% and a precision of 83.3%.

CONCLUSIONS

We validated the crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large non-university health care system with a widely used, commercially available electronic health record, indicating that the approach may be generalizable across healthcare settings and clinical systems. Further research is necessary to better evaluate the knowledge, to compare crowdsourcing with other approaches, and to evaluate if incorporating the knowledge into electronic health records improves patient outcomes.

Citation: McCoy AB, Wright A, Krousel-Wood M, Thomas EJ, McCoy JA, Sittig DF. Validation of a Crowdsourcing Methodology for Developing a Knowledge Base of Related Problem-Medication Pairs: Appl Clin Inform. 2015;6(2):334–44.

Read more:
ACI

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Leave a comment

Your email address will not be published. Required fields are marked *